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ABSTRACT: 

Energy consumption is becoming an increasingly 

important issue throughout the community. In order 

to reduce the energy consumption in networks is a 

crucial to greening mobile networks. In this paper 

energy spectrum trading (EST) scheme is proposed, 

which enables the macro Base Stations to offload 

their mobile traffic to Internet service providers by 

leveraging cognitive radio techniques. The 

cognitive radio technique uses a spectrum sharing 

scheme between wireless networks to improve the 

efficiency of spectrum usage and thereby alleviates 

spectrum scarcity due to growing demands for 

wireless broadband access. However, in the EST 

scheme, achieving optimal mobile traffic 

offloading in terms of minimizing the energy 

consumption of the macro BSs is NP-hard. The 

heuristic power consumption minimization 

(HPCM) algorithm to approximate the optimal 

solution with low computation complexity. The 

dynamic source routing protocol enables the 

mobile traffic offloading and significantly enhances 

the energy and spectral efficiency of mobile 

networks.  

 

Keywords: Mobile traffic offloading, Cognitive 

radio, energy efficiency wireless networks. 

 

I.INTRODUCTION 

The direct impact of greenhouse gases on the earth 

environment and the climate changes, the energy 

consumption of Information and Communication 

Technology (ICT) is becoming an environmental 

and economic issues. Mobile networks are among 

the major energy hoggers of mobile networks [1]. 

With the rapid development of radio access 

techniques and mobile devices, a variety of 

bandwidth-hungry applications and services such 

as web browsing, video streaming and social 

networking are gradually shifted to mobile 

networks, thus leading to an exponential increase 

of data traffic in mobile networks. The mobile data 

traffic surges result in a dramatic increase of 

energy consumption of mobile networks for 

provisioning higher network capacity. The 

multicell cooperation solutions for improving the 

energy efficiency of cellular networks [2]. As 

cellular network infrastructures and mobile devices 

proliferate, an increasing number of users rely on 

cellular networks in their daily lives. As a result, 

the energy consumption of cellular networks keeps 

increasing. Therefore, greening cellular networks is 

attracting tremendous research efforts in both 

academia and industry. With the aid of multicell 

cooperation, the performance of a cellular network 

in terms of throughput and coverage can be 

enhanced significantly. However, the potential of 

multicell cooperation on improving the energy 

efficiency of cellular networks remains to be 

unlocked. Taking the advantage of multicell 

cooperation, the energy efficiency of cellular 

networks can be improved from three aspects [2]. 

The first one is to reduce the number of active BSs 

required to serve users in an area. The solutions are 

to adapt the network layout according to traffic 

demands. The idea is to switch off BSs when their 

traffic loads are below a certain threshold for a 

certain period of time. When some BSs are 

switched off, radio coverage and service 

provisioning are taken care of by their neighboring 

cells. The second aspect is to associate users with 

green BSs powered by renewable energy. Through 

multicell cooperation, off-grid BSs enlarge their 

service area while on-grid BSs shrink their service 

area. The third aspect is to exploit coordinated 
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multipoint (CoMP) transmissions to improve the 

energy efficiency of cellular networks. With the aid 

of multicell cooperation, the energy efficiency of 

BSs on serving cell edge users is increased.  

 

Mobile traffic offloading, which is referred to as 

utilizing complementary communication networks 

to deliver mobile traffic, is a promising technique 

to improve the energy and spectral efficiency of 

mobile networks[3]. Content delivery acceleration, 

whose market is forecasted to grow to $ 5.5 billion 

in 2015, attracts tremendous research efforts from 

both industry and academia [4]. With the rapid 

development of radio access techniques and mobile 

devices, Internet applications are gradually moved 

to mobile networks. As shown in Fig. 1, mobile 

data traffic is forecasted to increase exponentially, 

and mobile web and video applications are the 

major mobile data generators which account for 

20% and 70.5% of the total data traffic, 

respectively [5]. 

 

 

 

 
Mobile web applications consume low bandwidth, 

but are sensitive to network latency. Subscribers 

usually expect a page to be loaded in less than two 

seconds, and 40% of subscribers wait for no more 

than 3 seconds before leaving the web sites. Thus, 

for a content provider, a one second delay in page 

load time can result in lost conversions, fewer page 

views, and a decrease in customer satisfaction [6]. 

Mobile video applications generate the largest 

wireless data traffic volume. Different video 

applications behave differently in term of 

bandwidth consumption. In order to offload, 

mobile traffic, mobile network operators usually 

deploy small cell base stations (BSs), e.g., pico-

BSs, femto-BSs and WiFi hot spots, in the area 

where the mobile traffic intensity is high. Such 

mobile network deployments, referred as to 

heterogeneous mobile networks, can efficiently 

offload mobile traffic from macro BSs, thus 

reducing the energy consumption of mobile 

networks. With strong revenue growth in wireless 

data markets, internet service providers (ISPs) such 

as Comcast and Optimum are densely deploying 

WiFi hot spots to provide WiFi connectivity to 

their customers in urban and suburban areas. 

Therefore, it is desirable to utilize the hotspots 

deployed by ISPs to offload mobile data traffic. A 

novel mobile traffic offloading scheme by 

leveraging cognitive radio techniques referred to as 

energy spectrum trading (EST). The EST scheme 

exploits the merits of both mobile networks and 

ISPs’ networks. One of the advantages of the 

mobile networks is that the networks are operating 

on licensed spectrum, which are not accessed by 

unlicensed users. Therefore, by proper spectrum 

management, mobile networks are able to provide 

their subscribers a variety of services with different 

QoS levels.  

 

II. RELATED WORKS 

 

Cognitive radio is widely expected to be the next 

Big Bang in wireless communications [7]. 

Spectrum sensing, that is, detecting the presence of 

the primary users in a licensed spectrum, is a 

fundamental problem for cognitive radio. The issue 

of spectrum underutilization in wireless 

communication can be solved in a better way using 

Cognitive Radio (CR) technology. Cognitive radios 

are designed in order to provide highly reliable 

communication for all users of the network, 

wherever and whenever needed and to facilitate 

effective utilization of the radio spectrum.  

Cognitive radio: It is a radio that can change its 

transmitter parameters based on interaction with 

environment in which it operates. Cognitive radio 

includes spectrum sensing, spectrum management, 

and spectrum sharing and spectrum mobility. 

•Spectrum sensing: Detecting unused spectrum and 

sharing the spectrum without harmful interference 

with other users. 

•Spectrum management: Capturing the best 

available spectrum to meet user communication 

requirements. 

•Spectrum mobility: Maintaining seamless 

communication requirements during the transition 

to better spectrum. 

•Spectrum sharing: Providing the fair spectrum 

scheduling method among coexisting xG users. 

 

A. Cognitive Radios 

Cognitive radios is a new term in wireless 

communication technology which interacts with 

real time environment to dynamically alter its 

operating parameters such as transmit power, 

carrier frequency, modulation to acclimate itself 

with the environment whenever there is a statistical 

change in the incoming radio frequency with the 

sole purpose to take advantage of the available 
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spectrum without causing interference to primary 

users. Cognitive radio includes intelligent detection 

by a transreceiver, which checks that which 

communication channels are in use and which are 

not, and takes an instant decision of moving to 

vacant channels while avoiding occupied ones. 

This optimizes the use of available Radio-

Frequency (RF) spectrum while minimizing 

interference to other users.In practice, the 

unlicensed users, also called secondary users 

(SUs), need to continuously monitor the activities 

of the licensed users, also called Primary Users 

(PUs), to find the spectrum holes (SHs), which is 

defined as the spectrum bands that can be used by 

the SUs without interfering with the PUs. This 

procedure is called spectrum sensing. There are 

two types of SHs, namely temporal and spatial 

SHs, respectively. A temporal SH appears when 

there is no PU transmission during a certain time 

period and the SUs can use the spectrum for 

transmission. A spatial SH appears when the PU 

transmission is within an area and the SUs can use 

the spectrum outside that area. To determine the 

presence or absence of the PU transmission, 

different spectrum sensing techniques have been 

used, such as matched filtering detection, energy 

detection, and feature detection. 

 

 
Fig 2: Principle of Spectrum Sensing 

B. Principle of Spectrum Sensing 

Fig.2 shows the principle of spectrum sensing. In 

the fig. the PU transmitter is sending data to the PU 

receiver in a licensed spectrum band while a pair of 

SUs intends to access the spectrum. To protect the 

PU transmission, the SU transmitter needs to 

perform spectrum sensing to detect whether there is 

a PU receiver in the coverage of the SU transmitter. 

Dynamic spectrum access (DSA) enables the 

implementation of cognitive radio (CR). Cognitive 

technology allows nodes to adapt to the radio 

environment by tuning their communication 

parameters. These parameters include operating 

frequency, power transmission and modulation 

scheme. In the cognitive network, secondary users 

(SUs) can access the free spectrum using overlay 

and underlay approaches, and by renting the free 

spectrum. In the overlay approach, SUs detect the 

existence of PUs and specify the unused spectrum 

accurately. Developing an efficient scheme for 

utilizing spectrum using overlay approach faces 

many challenges. These challenges include: 

detecting PUs signals, exchanging spectrum data, 

coordinating among SUs, accessing unused 

spectrum, assigning the unused spectrum to the 

SUs, and evaluating the available spectrum. Using 

underlay approach, SUs are constrained to operate 

below the noise threshold of PUs. Protecting the 

PUs against interference and supporting QoS for 

SUs are the main challenges for this approach. In 

this approach, there is no need to detect PUs 

signals or to specify the unused spectrum. SUs may 

also buy the right to access free spectrum 

temporarily from PUs. Specifying the size and the 

price of the offered spectrum for renting is the main 

challenge for PUs in the trading approach. PUs are 

required to maintain their QoS while 

simultaneously satisfying SUs. 

 

III. SYSTEM MODEL 

 

Consider an area consisting of one PBS and several 

SBSs from various ISPs as shown in Fig. 3. The 

PUs are randomly distributed in the area. Denote U 

and S as the set of Pus and SBSs, respectively. The 

PBS provides data service to the PUs within its 

coverage area via licensed spectrum. SBSs are 

randomly deployed in the area. We assume that 

SBSs are able to dynamically access the licensed 

spectrum by utilizing cognitive radio techniques 

 

 
Fig 3: Illustration of the energy spectrum trading 

scheme. 
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The proposed scheme is illustrated in Fig. 3, where 

the primary BS (PBS) is defined as the macro BS 

owned by the mobile network operator while the 

secondary BSs (SBSs) are referred to as the 

hotspots owned by ISPs. We assume both the PBS 

and SBSs are able to dynamically access the 

spectrum by leveraging cognitive radio techniques. 

There are two types of users: primary users (PUs) 

and secondary users (SUs). PUs are subscribers of 

the mobile networks while SUs are subscribers of 

ISPs. Different SUs may subscribe to different 

ISPs. The energy spectrum trading server manages 

the spectrum sharing and mobile data offloading 

between the mobile networks and ISPs’ networks. 

The PBS has the exclusive access to the licensed 

band. However, owing to the wireless channel 

fading between the PBS and PUs, providing high 

data rates to the PUs, especially to those located at 

the cell edge, is both bandwidth and power 

consuming. As compared with the PBS, the SBSs 

which are closer to the PUs may experience less 

wireless channel fading and have higher spectral 

and energy efficiency in providing data services to 

the PUs. In the EST scheme, the PBS shares a 

certain amount of licensed bandwidth with SBSs 

while SBSs provide data services to PUs within 

their coverage area using the allocated bandwidth. 

Since SBSs are close to PUs, the SBSs can satisfy 

PUs’ QoS requirements by utilizing only a portion 

of the allocated bandwidth. For example, in Fig. 3, 

if PU 1 is associated with the PBS, the PBS should 

allocate 2 MHz bandwidth to the PU to satisfy its 

minimum data rate requirement. If associated with 

the SBS, PU 1 may only require 1 MHz to ensure 

its minimum data rate. If the PBS offloads PU 1 to 

the SBS and grants the SBS 2MHz bandwidth, then 

the SBS spends 1 MHz bandwidth to serve PU 1, 

and the other 1MHz bandwidth can be utilized to 

enhance QoS of its SUs. Therefore, the EST 

scheme enables the PBS to reduce its power 

consumption by offloading some of the PUs to 

SBSs, and allows the SBSs to enhance their QoS to 

SUs by utilizing the licensed bandwidth. Since 

SBSs usually have a low transmit power, the power 

consumption and the spectrum usages of mobile 

networks in providing data 

services to PUs is reduced. Thus, the EST scheme 

enhances both the energy efficiency and the 

spectral efficiency of mobile networks. In order to 

minimize the power consumption, the PBS has to 

maximize the number of users offloading to SBSs. 

Meanwhile, since the total amount of licensed 

spectrum is limited, the PBS aims to minimize the 

amount of bandwidth allocated to SBSs because the 

less bandwidth allocated to SBSs, the more 

bandwidth is reserved for the PUs associated with 

the PBS, and therefore the PBS consumes less 

power. On the other hand, the PBS has to give the 

SBS sufficient incentives in term of the amount of 

licensed spectrum to incentivize SBSs to provide 

data services to the PUs. Therefore, solving the 

power consumption minimization (PCM) problem 

is to find user-BS associations and bandwidth 

allocations to minimize the power consumption of 

the PBSs while satisfying PUs’ minimum data rates 

and SBS’s bandwidth requirements. Therefore, we 

propose a heuristic algorithm to approximate the 

optimal solution achieved by the brute force search. 

The heuristic algorithm first finds the PUs whose 

user-BS associations are not determined, and then 

iteratively associates the PU, whose power-

bandwidth ratio is the largest, with SBSs. 

 

 

 

A. User-BS Associations in Heterogeneous Mobile 

Networks 

Heterogeneous network is a promising network 

architecture which may significantly enhance the 

spectral and energy efficiency of mobile networks. 

Thus, mobile users are more likely associated with 

the macro BS based on the strength of their 

received pilot signal. As a result, small cell BSs 

may be lightly loaded, and do not contribute much 

on traffic offloading. To address this issue, many 

user-BS association algorithms have been proposed 

[8]-[11]. Kim et al. [8] proposed a framework for 

the user-BS association in cellular networks to 

achieve flow level load balancing under spatially 

heterogeneous traffic distribution. Jo et al. [9] 

proposed cell biasing algorithms to balance traffic 

loads among macro BSs and small cell BSs. The 

cell biasing algorithms perform user-BS association 

according to the biased measured pilot signal 

strength, and enable the traffic to be offloaded from 

macro BSs to small cell BSs. Corroy et al. [10] 

proposed a dynamic user-BS association algorithm 

to maximize the sum rate of the network and 

adopted cell biasing to balance the traffic load 

among BSs. Fooladivanda et al. [11] studied the 

joint resource allocation and user-BS association in 

heterogeneous mobile networks. They investigated 

the problem under different channel allocation 

strategies, and the proposed solution achieved 

global proportional fairness among the users. 

Madan et al. [12] studied the user-BS association 

and interference coordination in heterogeneous 

mobile networks, and proposed heuristic 

algorithms to maximize the sum utility of average 

rates. The existing mobile traffic offloading scheme 

does not consider the traffic offloading among 

different service providers. In addition, the 

available user-BS association algorithms in 

heterogeneous networks usually assume that the 
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macro BS and small cell BSs belong to the same 

service provider.  

 

B. Communications Model 

In the EST scheme, the PBS aims to offload data 

traffic to SBSs to reduce its energy consumption, 

and is willing to grant a portion of the licensed 

spectrum to incentivize SBSs to allow PUs to 

access their networks. Meanwhile, SBSs aim to 

dynamically utilize the licensed spectrum to 

enhance QoS of data services to their subscribers. 

Thus, SBSs are willing to allow PUs to access their 

networks in exchange for the access of the licensed 

spectrum. We assume the total amount of licensed 

spectrum is W which can be split into orthogonal 

channels, e.g., OFDMA, with variable amount of 

bandwidth to avoid interference. Each channel is 

allocated to an individual PU as needed. For 

simplicity, we assume both PUs and SUs 

experience frequency flat fading. Therefore, we 

focus on the amount of bandwidth allocated to PUs 

and SBSs instead of specifying which part of the 

spectrum to be allocated. Users’ locations are 

assumed to be static during an EST procedure. We 

assume the channel fading changes slowly and can 

be considered as a constant within the duration. 

Therefore, the wireless channel is modeled as a 

slow-fading channel which reflects the large-scale 

fading between BSs and users. At the beginning of 

an EST procedure, the kth SBS calculates its 

bandwidth requirements, denoted as φk,i, for serving 

the ith PU. The calculation of φk,i consists of two 

steps. First, the kth SBS calculates the required 

bandwidth, φ
P

k,i, to satisfy the ith PU’s minimum 

data rate, ri
min

. Assuming the kth SBS’s transmit 

power-spectral density is p
s
, and the channel fading 

between the kth SBS and the ith PU is h
s
k,i, φ

P
k,i can 

be derived by solving 

                                                  

.                                                            

 (1) 

Second, the kth SBS calculates the required 

bandwidth, φ
S
k,i, to compensate for its cost in 

serving the ith PU. The kth SBS’s cost includes the 

SBS’s energy consumption and backhaul usages 

for serving the ith PU. The cost may be different 

for different ISPs. For example, in Fig. 3, the 

second ISP utilizes green energy powered access 

point, which may reduce the energy cost. Thus, as 

compared with other ISPs, the second ISP may 

incur a smaller cost in serving one PU. However, 

how to calculate φ
S
k,i is beyond the scope of the 

paper. We assume φ
S
k,i is a constant. Then, 

                                                            φk,i = φPk,i   

+ φSk,i.                                                                               

(2) 

The energy spectrum trading server collects φk,i,∀k 

∈ S, ∀i ∈ U, and optimizes the user-BS 

associations and bandwidth allocations to minimize 

the energy consumption of the PBS. 

IV. POWER MODEL 

This section provides a power model for various 

types of Base Stations. The power model 

constitutes the interface between component and 

system level, which allows quantifying how energy 

savings on specific components enhance the energy 

efficiency at the node and network level [13]. 

A. Base Station Power Consumption Breakdown 

 

 

 
Fig 4.Block diagram of a base station transceiver 

 

Fig.4 shows a simplified block diagram of a 

complete BS that can be generalized to all BS 

types, including macro, micro, pico and femto BSs. 

A BS consists of multiple transceivers (TRXs), 

each of which is serving one transmit antenna 

element. A TRX comprises a Power Amplifier 

(PA), a Radio Frequency (RF) small-signal 

transceiver section, a baseband (BB) interface 

including a receiver (uplink) and transmitter 

(downlink) section, a DC-DC power supply, an 

active cooling system, and an AC-DC unit (mains 

supply) for connection to the electrical power grid. 

In the following the various TRX parts are 

analyzed. Antenna Interface: The influence of the 

antenna type on power efficiency is modeled by a 

certain amount of losses, including the feeder, 

antenna band-pass filters, duplexers, and matching 

components. Since macro BS sites are often 

situated at different physical locations as the 

antennas a feeder loss of about σ feed=3 dB needs 

to be added. The feeder loss of a macro BS may be 

mitigated 

by introducing a remote radio head (RRH), where 

the PA is mounted at the same physical location as 
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the transmit antenna. Likewise, feeder losses for 

smaller BS types are typically negligible. 

Power Amplifier (PA): Typically, the most efficient 

PA operating point is close to the maximum output 

power (near saturation). Unfortunately, non-linear 

effects and OFDM modulation with non-constant 

envelope signals force the power amplifier to 

operate in a more linear region, i.e., 6 to 12 dB 

below saturation. This prevents Adjacent Channel 

Interference (ACI) due to non-linear distortions, 

and therefore avoids performance degradation at 

the receiver. However, this high operating back-off 

gives rise to poor power efficiency _PA, which 

translates to a high power consumption PPA.  

The Small-Signal RF Transceiver (RF-TRX) 

comprises a receiver and a transmitter for uplink 

(UL) and downlink (DL) communication. The 

linearity and blocking requirements of the RF-TRX 

may differ significantly depending on the BS type, 

and so its architecture. Typically, low-IF 

(Intermediate-Frequency) or super-heterodyne 

architectures are the preferred choice for 

macro/micro BSs, whereas a simpler zero-IF 

architecture are sufficient for pico/femto BSs [10]. 

Baseband (BB) Interface: The baseband engine 

(performing digital signal processing) carries out 

digital up/down-conversion, including filtering, 

FFT/IFFT for OFDM, modulation/demodulation, 

digital-pre-distortion (only in DL and for large 

BSs), signal detection (synchronization, channel 

estimation, equalization, compensation of RF non-

idealities), and channel coding/decoding. For large 

BSs the digital baseband also includes the power 

consumed by the serial link to the backbone 

network. Finally, platform control and MAC 

operation add a further 

power consumer (control processor).  

Power Supply and Cooling: Losses incurred by 

DC-DC power supply, mains supply and active 

cooling scale linearly with the power consumption 

of the other components, and may be approximated 

by the loss factors σDC, σMS, and σcool, respectively. 

Note that active cooling is only applicable to macro 

BSs, and is omitted in smaller BS types. Moreover, 

for RRHs active cooling is also obsolete, since the 

PA is cooled by natural air circulation, and the 

removal of feeder losses σfeed allow for a lower PA 

power consumption, PPA , where ηPA 

denotes the PA power efficiency. 

A. Energy Consumption Model 

The PBS’s power consumption consists of two 

parts: the static power consumption and the 

dynamic power consumption. The static power 

consumption is the power consumption of a BS 

without any traffic load. The dynamic power 

consumption refers to the additional power 

consumption caused by traffic load on the BS. We 

consider the PBS’s static power consumption, p
fix

, 

as a constant, and focus on reducing the dynamic 

power consumption of a PBS by offloading its 

traffic to SBSs. The dynamic power consumption 

of a macro BS depends on the traffic load on the 

BS and can be expressed as a linear function of the 

BS’s transmit power [13]. Therefore, we model the 

PBS’s power consumption as 

                                                        

                                                                        

(3) 

Here, α is a coefficient which reflects the 

relationship between the PBS’s dynamic energy 

consumption and the summation of the PBS’s 

transmit power toward its associated PUs.  

The value of α depends on the characteristic of the 

BS [17]. μi is an indicator function. If PU is 

associated with the PBS, μi = 1; otherwise, μi = 0. 

wi is the amount of bandwidth allocated to the ith 

PU, and pi is the transmit power-spectral density in 

wi. 

V. A HEURISTIC POWER CONSUMPTION 

MINIMIZATION ALGORITHM 

In this section, we propose a heuristic power 

consumption minimization (HPCM) algorithm to 

approximate the optimal solution of the PCM 

problem with low computational complexity, and 

prove that the maximum power savings achieved 

by the HPCM algorithm is at least 50% of that 

achieved by the brute force search.  

A. The HPCM Algorithm 

For the PCM problem, if user-BS associations are 

determined, then μi and βk,i are known. The amount 

of available bandwidth in the PBS can be derived 

as 

                                               

.                                                                          

 (4) 

Define U
P 

= {i|μi = 1,∀i ∈U} as the set of PUs 

associated with the PBS. Then, the PCM problem 

becomes a bandwidth allocation (BA) problem as 

follows: 
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(5) 

. Let  and w 

= (w1,w2,··· ,w|UP|). When w > 0, 

                                

               

.                                                 

(6) 

 

Thus, f(w) is a convex function of w. Therefore, the 

objective function of the BA problem is convex. 

The constraints of the BA problem satisfy the 

Slater’s conditions, and therefore the Karush-

Kuhn-Tucher (KKT) conditions provide necessary 

and sufficient conditions for the optimality of the 

BA problem [19]. Hence, we can derive optimal 

bandwidth allocations by solving the KKT 

conditions of the BA problem. The PCM problem, 

thus, can be solved in two steps. In the first step, 

the user-BS associations are determined. Then, the 

PCM problem is reduced to the BA problem. In the 

second step, the BA algorithm is solved by solving 

its KKT conditions. Since the BA problem can be 

easily solved, the major difficulty of solving the 

PCM problem is to optimize the user-BS 

associations. 

VI. SIMULATION RESULTS 

The simulation scenarios are set up to evaluate the 

performance of the proposed Energy Spectrum 

Trading scheme and the Heuristic power 

consumption minimization algorithm. In the 

simulation, fig 5 the EST scheme enables mobile 

network to offload data traffic to ISPs’ network to 

improve energy and spectral efficiency. There are 

two types of users: primary users (PUs) and 

secondary users (SUs). PUs are subscribers of the 

mobile networks while SUs are subscribers of ISPs. 

Different SUs may subscribe to different ISPs. 

The energy spectrum trading server manages the 

spectrum sharing and mobile data offloading 

between the mobile networks and ISPs’ networks. 

The PBS has the exclusive access to the licensed 

band. As compared with the PBS, the SBSs which 

are closer to the PUs may experience less wireless 

channel fading and have higher spectral and energy 

efficiency in providing data services to the PUs.  

 

 

Fig: 5 Simulation of the Energy spectrum trading 

scheme.  

 

 
Fig: 6 The graph of time versus packet loss.  
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Fig: 7 The graph of Time versus Delay 

In the EST scheme, the PBS shares a certain 

amount of licensed bandwidth with SBSs while 

SBSs provide data services to PUs within their 

coverage area using the allocated bandwidth. By 

using this technique, we thus propose a heuristic 

algorithm to approximate the optimal solution with 

low computation complexity. We have proved that 

the energy savings achieved by the proposed 

heuristic algorithm is at least 50% of that achieved 

by the brute-force search. By using this technique, 

we have minimize the power consumption of base 

station at least 50% and maintain the network 

performance, delay, packet loss and throughput. 

The graph of packet loss is shown in fig: 6 

 

In fig 6 time is plot on the x-axis and packet loss is 

plot on the y-axis. If PU 1 is associated with the 

PBS, the PBS should allocate 2 MHz bandwidth to 

the PU to satisfy its minimum data rate 

requirement. If associated with the SBS, PU 1 may 

only require 1 MHz to ensure its minimum data 

rate. 

If the PBS offloads PU 1 to the SBS and grants the 

SBS 2 MHz bandwidth, then the SBS spends 1 

MHz bandwidth to serve PU 1, and the other 1MHz 

bandwidth can be utilized to enhance QoS of its 

SUs. Therefore, the EST scheme enables the PBS 

to reduce its power consumption by offloading 

some of the PUs to SBSs, and allows the SBSs to 

enhance their QoSs to SUs by utilizing the licensed 

bandwidth. Since SBSs usually have a low transmit 

power, the power consumption and the spectrum 

usages of mobile networks in providing data 

services to PUs is reduced. Thus, the EST scheme 

enhances both the energy efficiency and the 

spectral efficiency of mobile networks. Throughput 

of the network also maintained. 

 

 

Fig: 8 The graph of Time versus Throughput 

  

 

VII. CONCLUSION 

In this paper, we have proposed a novel energy 

spectrum trading(EST) scheme which enables the 

mobile traffic offloading between the mobile 

networks and the ISPs’ network by leveraging 

cognitive radio techniques. The HPCM algorithm 

enables the mobile traffic offloading, and 

significantly enhances the energy and spectral 

efficiency of mobile networks. The heuristic power 

consumption minimization (HPCM) algorithm to 

approximate the optimal solution with low 

computation complexity. The dynamic source 

routing protocol enables the mobile traffic 

offloading and significantly enhances the energy 

and spectral efficiency of mobile networks.  
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