
International Journal of Emerging Technology and Innovative Engineering
Volume I, Issue 4, April 2015

ISSN: 2394 - 6598
www.ijetie.org

21

COPYRIGHT TO IJETIE

Image Processing Using Mapreduce With

Performance Analysis
Mr. Harish K. Barapatre

1
 Mr. Vaibhav Nirgun

2
 Mr. Harish Jagtap

3
 Mr. Sagar Ginde

4

 Dept. Of Computer Engineering, University of Mumbai
1234

 Yadavrao Tasgaonkar Institute of Engineering and Technology
1234

harishkbarapatre@gmail.com
1

 vaibhav.myke1811@gmail.com
2

 jagtapharish8@gmail.com
3
 gindesagar@gmail.com

4

Abstract— The traditional approach to transcoding multimedia

data requires specific and expensive hardware because of the

high-capacity and high definition features of multimedia data

and transmoding imposes a considerable burden on the

computing infrastructure as the amount of data increases. The

proposed module is based on Hadoop HDFS and the MapReduce

framework for distributed parallel processing of image database

and JAI library for converting the image database into target

format and resizing the images also we convert the resizing

images into grey scale format. In addition we evaluate the

proposed module in terms of processing time under varying

experimental conditions on windows platform in cloud

environment.

Index Terms—Hadoop; MapReduce; JAI; HIPI; HDFS;

Cygwin;

INTRODUCTION

MDCM is one of the application modules which stores,

process and converts the image data into target format using

HIPI framework (Hadoop Image processing Interface) and it

reduces the size of image data. It also provides the grey scale

image using JAI library has been investigated in some

studied[18].The amount of images being uploaded to the

internet is rapidly increasing, with Facebook users uploading

over 2.5 billion new photo severy months [Facebook 2010],
however, applications that make use of this data are severely

lacking. Current computer vision applications use a small

number of input images because there is difficulty in acquiring

computational resources and less storage options for large

amounts of data [White et al. 2010]. The Hadoop MapReduce

platform provides a system for large and computational

intensive distributed processing (Dean, 2004), though use of

Hadoop system is severely limited by the technical

complexities of developing useful applications [White et al.

2010]. To immediately address this, we propose an open-

source Hadoop Image Processing Interface (HIPI) that aims to

create an interface for computer vision with MapReduce

technology. HIPI abstracts the highly technical details of

Hadoop’s system and is flexible enough to implement much

technique in current computer vision literature. Users access

multimedia system objects not solely from ancient desktops

however additionally from mobile devices, like smart phones

and i-pads, whose resources are limited in terms of process,

storage, and show capabilities.

Multimedia system process is characterised by large amounts

of knowledge, requiring large amounts of process, storage,

and communication resources, thereby imposing a substantial

burden on the computing infrastructure [1] [18]. The standard

approach for transcoding multimedia system needs specific

and costly hardware attributable to the high-capacity and high

definition options of multimedia system knowledge.

Therefore, general purpose devices and ways aren't price

effective, and that they have limitations. Recently, transcoding

supported cloud computing has been investigated in some

studies [1] [2] [3] [18].During this study, we have a tendency

to style and implement a multimedia data conversion module

supporting MapReduce and HDFS (Hadoop distributed file

system) so as to handle the issues mentioned on top of the

planned module, it consists of two components. The primary

half stores an outsized quantity of image knowledge into

HDFS for distributed multiprocessing. The second half

processes the hold on image knowledge in HDFS

victimisation the MapReduce framework and Java Advanced

Imaging (JAI) for changing image knowledge into target

formats. We have used the Sequence Files methodology to

handle the matter of processing tiny files within the Map

operation.

We perform two experiments to demonstrate the proposed

module’s excellence in without Hadoop and with Hadoop. In

the first experiment, we compare the proposed module with a

non- Hadoop-based single program running on two different

machines. In addition, we verify processing time under

different data sizes with non Hadoop and Hadoop based

system of the proposed module according to the data sizes of

images.

The remainder of this paper is organized as follows. In section

2, we introduce Hadoop HDFS, MapReduce, and JAI. The

module architecture and its features are proposed in section 3.

In section 4, we describe the implementation module and in

section 5 we describe the configuration of Hadoop on

windows. The results of the evaluation are presented in section

6. Finally, section 7 concludes this paper with suggestions for

future research and Related Work.

International Journal of Emerging Technology and Innovative Engineering
Volume I, Issue 4, April 2015

ISSN: 2394 - 6598
www.ijetie.org

22

COPYRIGHT TO IJETIE

HDFS, MAPREDUCE, JAI, HIPI

 A. HDFS

Hadoop is an open source frame work for running

applications on large cluster built of commodity hardware.

The Hadoop frame work transparently provides applications

both reliability and data motion. Hadoop implements a

computational paradigm named map/reduce where the

application is divided into many small fragments of work,

each of which may be executed or re-executed on any node in

the cluster. In addition, it provides a distributed file system

(HDFS) that stores data on the compute nodes, providing very

high aggregate bandwidth across the cluster. Both maps

reduce and the Hadoop distributed file systems are designed

so that node failures are automatically handled by the frame

work.

B. MAPREDUCE

MapReduce frameworks provide a specific programming

model and a run-time system for processing and creating large

amounts of datasets which is amenable to various real-world

tasks [8]. MapReduce framework also handles automatic

scheduling, communication, synchronization for processing

huge datasets and it has the ability related with fault tolerance.

MapReduce programming model is executed in two main steps,

called mapping and reducing. Mapping and reducing are

defined by mapper and reducer functions that are data

processing functions. Each phase has a list of key and value

spairs as input and output. In the mapping, MapReduce input

datasets and then feeds each data element to the mapper as a

form of key and value pairs. In the reducing, all the outputs

from the mapper are processed and a final result is created by

reducer with merging process. The MapReduce programming

model will be actively working with this distributed file system.

C. JAI

JAI is an open-source Java Advanced Image Processing

library used for Hipi Image Processing. In JAI Library

includes Mapping Function, Reduced Function, and Scaling

Function which give the output in target format. In the paper

we include JAI library on windows platform also we import

many JAR files that support the eclipse and Hadoop plug-in.

JAI is an open-source Java library used for image processing

[7]. JAI supports various image formats (BMP, JPEG, PNG,

PNM, and TIFF) and encoder/decoder functions. In addition,

most of the functions related with image conversion are

provided through an API, and thus, JAI can be used as a

simple framework for image processing.

D. HIPI (Hadoop Image Processing Interface)

HIPI was created to empower researchers and present them

with a capable tool that would enable research involving

image processing and vision to be performed extremely easily.

We modified HIPI with the following goals in mind.

1. Provide an open, extendible library for image processing

and computer vision applications in a MapReduce framework.

2. Store images efficiently for use in MapReduce applications.

3. Allow simple filtering of a set of images.

4. Present users with an intuitive interface for image-based

operations and hide the details of the MapReduce framework

5. HIPI will set up applications so that they are highly

parallelized and balanced so that users do not have to worry

about such details.

I. IMAGE PROCESSING MODULE ARCHITECTURE

In this study, we designed and implemented a MapReduce

base Image Conversion module in a cloud-computing

environment to solve the problem of computing infrastructure

overhead. Such overhead increases the burden on the Internet

infrastructure owing to the increase in multimedia data shared

through the Internet. The traditional approach of transcoding

Image Conversion usually involves general-purpose devices

and offline-based processes. However, processing is time

consuming and requires large computing resources. To solve

this problem, we designed Image conversing module that

exploits the advantages of cloud computing. The proposed

module can resize and convert images in a distributed and

parallel manner.

FIGURE-1: IMAGE PROCESSING SYSTEM

ARCHITECTURE

International Journal of Emerging Technology and Innovative Engineering
Volume I, Issue 4, April 2015

ISSN: 2394 - 6598
www.ijetie.org

23

COPYRIGHT TO IJETIE

The proposed module use HDFS as storage for distributed

parallel processing. The image data is distributed in HDFS.

For distributed parallel processing, the proposed module uses

the Hadoop MapReduce framework. In addition, the proposed

module uses the JAI library in Mapper for image resizing and

conversion. Figure 1 shows the proposed module architecture.

The proposed module stores image data into HDFS. HDFS

automatically distributes the image data to each data node.

HIPI framework encoded the images and converted into

floating images The Map function processes each float image

data in a distributed and parallel manner. The proposed

module does not have a summary or construction stage. Thus,

there is no need to implement the Reduce function in the

proposed module only the Map function is implemented.

II. IMPLEMENTATION OF IMAGE PROCESSING

MODULE

Step 1: Download the set of images and converted into float

Image bundle using HIPI (input) and initialize the processing

start time.

Step 2: The Conversion module reads float value of image

data from HIPI using the Record Reader method of the class

input Format.

Step 3: Process the image data on HDFS and input format of

mapper transforms the image data into sets of Keys (file

names) and Values (bytes). Input format passes the sets of

Keys and Values to the Mapper.

Step 4: The Mapper processes the image data using the user

defined settings and methods for image conversion through

JAI library.

Step 5: The conversion module converts the image data into

specific formats suitable for a variety of devices such as smart

phones, pads and personal computers in a fully distributed

manner.

Step 6: The Mapper completes the image into target and

passes the results to output format as Key (file name) and

Value (byte).

Step 7: The Mapper passes the set of Key and Value to output

format. The Record Writer method of the Output Format class

writes the result as a file to HDFS.

Step 8: Record Writer method writes the data into the target

format also calculate processing time.

Step 9: Calculate the total Processing time with Hadoop.

In this study, the image conversion module was implemented

on the basis of Hadoop. However, small chunked files bring

problems for the Hadoop MapReduce process. Map tasks

usually process a single block of input data at each time

instant. If there are many small files, then each Map task

processes only a small amount of input data, and as a result,

there are many unscheduled Map tasks, each of which imposes

extra bookkeeping overhead. Consider a 1-GB file, broken

into 16 64-MB blocks, and approximately 10,000 100-KB

files. The 10,000 files may require tens or hundreds of times

more processing time than an equivalent single-input file.

III. INSTALLING A HADOOP ON WINDOWS

First of all installed JAVA and Eclipse i.e. prerequisite

software. After installing the prerequisite software, the next

step is to install the Cygwin environment. Cygwin is a set of

UNIX packages imported to Microsoft Windows. It is needed

to run the scripts supplied with Hadoop because they are all

written for the UNIX platform.

To install the Cygwin environment follow these steps:

Download Cygwin installer from http://www.cygwin.com.

1. Run the downloaded file.

2. Keep pressing the 'Next' button until you see the package

selection screen. Make sure you select 'openssh'. This

package is required for the correct functioning of the

Hadoop cluster and Eclipse plug-in.

3. After you selected these packages press the 'Next' button to

complete the installation.

4. Set Environment Variables

5. Setup SSH daemon
6. Configure ssh daemon

Open the Cygwin command prompt. Execute the following

command:

When asked if privilege separation should be used, answer no.

When asked if sshd should be installed as a service, answer

yes.
When asked about the value of CYGWIN environment

variable, enter ntsec.

Start SSH daemon

6.1 Find My Computer icon either on your desktop or in the

start-up menu, right-click on it and select Manage from

the context menu.

6.2 Open Services and Applications in the left-hand panel

then select the Services item.

6.3 Find the CYGWIN sshd item in the main section and

right-click on it.

6.4 Select Start from the context menu.

A small window should pop-up indicating the progress of the

service start-up. After that window disappears the status of

CYGWIN sshd service should change to Started. The next

step is to Setup authorization key.

7. Download the Hadoop 0.19.1 and unpack the packages

and configure the Hadoop with eclipse.

8. Start the local hadoop cluster

Ssh-host-config

International Journal of Emerging Technology and Innovative Engineering
Volume I, Issue 4, April 2015

ISSN: 2394 - 6598
www.ijetie.org

24

COPYRIGHT TO IJETIE

9. Next step is to launch the newly configured cluster. Close all

the windows on the desktop open five Cygwin windows and

arrange them in proper sequence as shown in figure-2

FIGURE-2 LOCAL HADOOP CLUSTER

Start the namenode in the first window by executing:

Cd hadoop-0.19.1

bin/hadoop namenode

Start the secondary namenode in the second window by

executing:

Cd hadoop-0.19.1

bin/hadoop secondarynamenode

Start the job tracker the third window by executing:

Cd hadoop-0.19.1

bin/haoop jobtracker

Start the data node the fourth window by executing:

Cd hadoop-0.19.1

bin/haoop datanode

Start the task tracker the fifth window by executing:

cd hadoop-0.19.1

bin/haoop tasktracker

Now we should have an operational hadoop cluster. If

everything went fine your screen, the cluster is running and

we can proceed to the next step.

Setup Hadoop Location in Eclipse

Next step is to configure Hadoop location in the Eclipse

environment. Launch the Eclipse environment. Open

Map/Reduce perspective by clicking on the open perspective

on (), select "Other" from the menu, and then select

"Map/Reduce" from the list of perspectives. After switching

to the Map/Reduce perspective, select the Map/Reduce

Locations tab located at the bottom of the Eclipse

environment. Then right click on the blank space in that tab

and select "New Hadoop location...." from the context menu.

We should see a dialog box i.e. define hadoop location. Fill in

the following items, as shown on the figure above.

 Location Name – localhost

o Map/Reduce Master

o Host – localhost

o Port – 9101

 DFS Master

 Check "Use M/R Master Host"

 Port – 9100

 User name – User

Then press the Finish button. After closing the Hadoop

location settings dialog we should see a new location in the

"Map/Reduce Locations" tab. In the Project Explorer tab

on the left hand side of the Eclipse window, find the DFS

Locations item. Open it using the "+" icon on its left. Inside,

we should see the localhost location reference with the blue

elephant icon. Keep opening the items below it until we see

local host. We can now move on to the next step.

Upload data to HDFS

We are now ready to run the first Map/Reduce project but data

is still missing. This section explains how to upload data to the

Hadoop Distributed File System (HDFS). Upload Files to

HDFS Open a new CYGWIN command window. Execute the

following commands in the new CYGWIN window as shown

on the figure-2

cd hadoop-0.19.1

bin/hadoop fs -mkdir In

bin/hadoop fs -put *.txt In

When the last of the above commands starts executing, we

should see some activity in other Hadoop windows. The result

of these commands is a newly created directory -- named In --

in the HDFS which contains a set of text files that comes with

the Hadoop distribution. Close the Cygwin Window. Verify if

the files were uploaded correctly In this section we will check

if the files were uploaded correctly.

1. Open the Eclipse environment.

2. Open DFS locations folder which is located in the Project

Explorer tab of Map/Reduce perspective.

3. Open localhost folder in DFS locations folder.

4. Keep opening HDFS folders until we navigate to the newly

created In directory

5. When we get to the in directory, double-click on the file

LICENCE.txt to open it.

6. If we see something then the data was uploaded correctly

and we can proceed to your Hadoop project.

7. We can now move on to the next step. For Creating and

run Hadoop project

International Journal of Emerging Technology and Innovative Engineering
Volume I, Issue 4, April 2015

ISSN: 2394 - 6598
www.ijetie.org

25

COPYRIGHT TO IJETIE

WORKING OF SYSTEM MODULE

Download the multiple images from internet and stored into

HDFS for processing images in a distributed manner.

Start

Input Multimedia data

(with format)

Map Reduce ProcessJAI Process

Finish

Comparative Study

Compute Time

FIGURE-3 WORKING OF DATA CONVERSION

MODULE

 HIPI interface using the HIPI Image Bundle data type as

inputs, we have created an input specification that will

distribute images in the HIPI Image Bundle across all map

nodes. We distribute images such that we attempt maximize

locality between the mapper machines and the machine where

the image resides. And a user would have to create

InputFormat and RecordReader classes using JAI library.

Mapper function conver the image data into target format as

shown in figure-3 and compute the processing time with

mapper function and JAI library.

IV. EVALUATION

The privileged server used in the experiments for evaluation is

a single enterprise scale cluster that consists of 20

computational nodes. Table 1 lists the specifications of the

evaluation cluster. Because the structure of the cluster is

homogeneous, it provides a uniform evaluation environment.

TABLE I. EVALUATION CLUSTER SPECIFICATIONS

CPU Intel Xeon 4 Core DP E5506 2.13GHz *

2EA

RAM 4GB Registered ECC DDR * 4EA

HDD 1TB SATA-2 7,200 RPM

OS WINDOWS-7

Hadoop 0.19.1

JAVA 1.6.1_23

JAI Java Advanced Imaging JAI 1.1.3

CYGWINE UNIX TERMINAL

ECLIPSE ECLIPSE-Europe

Nine data sets were used to verify the performance of the

proposed module. The average size of an image files was

approximately 19.8 MB. Table II lists the specific information

about the data sets used.

TABLE-II IMAGE DATASETS

SIZE

(GB)

1 2 4 8 10 20 40

FORMAT JPG/PNG/TIFF/GIF

SOURCE FLICKER

During the experiment, the following default options in

Hadoop were used. The number of block replications was set

to 3, and the block size was set to 64 MB. We evaluated the

processing Time of the proposed module and optimized it. We

planned and executed the experiments. In the First experiment,

we calculate the processing time of proposed module with a

non-Hadoop-based system and the second experiment we

calculate the processing time with Hadoop system. We

measured each running time taken in our server using only

sequential programing using JAI libraries without

MapReduce, respectively. Figure 4 shows the result of the first

Experiment with Hadoop and calculate the processing time

and resizing the images also converted into the target format.

Figure 5 shows the result of the second Experiment with non-

Hadoop based system and calculate the processing time and

resizing the images also converted into the target format.

We measured each running time taken in privileged server on

windows platform applying only sequential programing using

Figure 4: with hadoop resizing the image

International Journal of Emerging Technology and Innovative Engineering
Volume I, Issue 4, April 2015

ISSN: 2394 - 6598
www.ijetie.org

26

COPYRIGHT TO IJETIE

FIGURE 5: NON HADOOP BASED SYSTEM

JAI libraries in without Hadoop and Second experiment we

measured processing time applying only JAI with MapReduce

Figure 6 shows the result of implementation module

FIGURE 6: EVALUATED PROCESSING TIME FOR WITH

HADOOP AND WITHOUT HADOOP

We provided the following data as input and converted into the

target format as shown in table III data specification after the

execution the system module also we have studied and ploted

the graph as shown in figure-6.

TABLE III. INPUT OUTPUT SPECIFICATION

DATA
SIZE (MB)

TOTAL NO.
IMAGES

SOURCE
FORMAT

DESTINATION
FORMAT

1 29 JPEG PNG

2 52 JPEG BMP

4 21 JPEG JIF

8 22 JPEG PNG

16 97 JPEG JIF

32 182 JPEG BMP

64 224 JPEG JPEG

The processing time for the sequential processing without

Hadoop always required large as compared to MapReduce

when the data is too large. However, after 180 files, the

difference between the performances of the two experiments

grows when the number of processing files exceeds a certain

level; the task of creating Map generates JVM overhead. The

option of reusing JVM is a possible solution to reduce

overhead created by processing numerous small files on

HDFS, as can be seen in the results presented above also we

reduce the Burdon of computing power because we processed

the data without any hardware, the whole system are designed

in JAVA and JAI library using HDFS.

V. CONCLUSIONS & FUTURE WORK

The proposed module is based on Hadoop HDFS and the

MapReduce framework on windows for distributed parallel

processing of large-scale image data. We redesigned and

implemented InputFormat and OutputFormat in the

MapReduce framework for image data. We used the JAI

library for converting the image format and resizing the

images. We exploited the advantages of cloud computing to

handle IMAGE processing. We performed two systems for

calculating the processing time. In the first experiment, we

compared the proposed module with a non-Hadoop-based

single program using the JAI library. The proposed module

shows better result than the single program. In the second

experiment, we changed the mapred.job.reuse.jvm.num.task

option in the mapred-site.xml file, and we evaluated its

processing time. The results of the both experiment show that

when the proposed module processes large numbers of small

files, it gives the better processing time as compared to non

Hadoop based system also it converted the source image into

0

2000

4000

6000

8000

10000

12000

14000

0 50 100

P
R

O
C

ES
SI

N
G

 T
IM

E
(M

S)

DATA SIZE (MB)

PROCESSING
TIME (MS)
WITHOUT
HADOOP

PROCESSING
TIME (MS)
WITH
HADOOP

International Journal of Emerging Technology and Innovative Engineering
Volume I, Issue 4, April 2015

ISSN: 2394 - 6598
www.ijetie.org

27

COPYRIGHT TO IJETIE

the target format (JPEG, PNG, BMP, and TIFF). The Planer

image method of JAI-Mapper provided the output images as

resizing and greyscale format.

Future research should focus not only on image data but also

on video data. We plan to implement an integrated multimedia

process system and a multimedia share system for SNS in a

cloud-computing environment.

ACKNOWLEDGMENT

We would like to give particular thanks to ME guide PROF.

ANIL CHHANGANI for his guidance and mentoring

throughout this project. His leadership and vision have been

excellent models and points of learning for us throughout this

process.

REFERENCES

[1]Lee Hyeokju, Kim Myoungjin, Joon Her, and Hanku Lee,

Division of Internet & Multimedia Engineering, Konkuk

University Seoul Korea in 2011 Ninth IEEE International

Conference on “Dependable, Autonomic and Secure

Computing”

[2] Lee Hyeokju, Kim Myoungjin, Joon Her, and Hanku Lee,

Division of Internet & Multimedia Engineering, Konkuk

University Seoul Korea in IEEE ICOIN 2012 “Multimedia

cloud environment”

[3]Sun-Moo Kang, Bu-Ihl Kim, Hyun-Sok Lee, Young-so

Cho, Jae-Sup Lee, Byeong-Nam Yoon, “A study on a public

multimedia sevice provisioning architecture for enterprise

networks”, Network Operations and Management

Symposium, 1998, NOMS 98., IEEE, 15-20 Feb 1998, 44-48

vol.1, ISBN : 0 -7803-4351-4

[4] Wang Hanli,YunShen, Wang Lei, ZhufengKuangtian,Wei

Wangand Cheng, Key Laboratory of Embedded System and

Service Computing, Ministry of Education, “Large-Scale

Multimedia Data Mining Using MapReduce Framework”,

2012 IEEE 4th International Conference on Cloud Computing

Technology and Science.

[5] B. He and N. K. Govindaraju, “Mars: A MapReduce

framework on graphics processors”, in PACT’08, 2008, pp.

260- 269.

[6] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang,

“FPMR: MapReduce framework on FPGA”, in FPGA’10,

2010, pp. 93-102.

[7] S. Papadimitriou and J. Sun, “DisCo: distributed co-

clustering with Map-Reduce”, in IEEE ICDM’08, 2008, pp.

512-521.

[8] Y. Li, D. J. Crandall, and D. P. Huttenlocher, “Landmark

classification in large-scale image collections”, in IEEE

ICCV’09, 2009, pp. 1957-1964.

[9] L. Kennedy, M. Slaney, and K. Weinberger, “Reliable tags

using image similarity: mining specificity and expertise from

large-scale multimedia databases”, in WSMC’09, 2009, pp.

17-24.

[10] R. Yan, M. O. Fleury, M. Merier, A. Natsev, and J. R.

Smith, “Large-scale multimedia semantic concept modeling

using robust subspace bagging and MapReduce”, in LS-

MMRM’09, 2009, pp. 35-42.

[11] B. White, T. Yeh, J. Lin, and L. Davis, “Web-scale

computer vision uses MapReduce for multimedia data

mining”, in MDMKDD’10, 2010, article No. 9.

 [12] Hyeokju Lee, Myoungjin Kim, Joon Her, and Hanku Lee,

2011 Ninth IEEE international Conference on Dependable,

Autonomic and Secure Computing on “Performance

Evaluation of Image Conversion Module Based on

MapReduce for Transco ding and Transmoding in SMCCSE”

[13] S. Ghemawat, H. Gobioff and S.T. Leung, “The Google

file system,” Operating Systems Review (ACM), vol.37, no.5,

pp.29 -43, Oct. 20030.

[14] S. Ghemawat, H. Gobioff and S.T. Leung, “The Google

file system,” Operating Systems Review (ACM), vol.37, no.5,

pp.29 -43, Oct. 20030.

[15] http://www.cloudera.com/blog/2009/02/the-small-files-

problem/

[16] Hadoop Distributed File System:

hadoop.apache.org/hdfs/

[17] Jeffrey Dean, Sanjay Ghemawat, “MapReduce :

Simplified Data Processing on large Cluster”, OSDI`04 : Sixth

Symposium on Operating System Design and Implementation,

San Francisco, CA, December, 2004.

[18] Java Advanced Imaging Library:

java.sun.com/javase/technologies/desktop/media/jai/

